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Chaos in effective classical and quantum dynamics
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We investigate the dynamics of classical and quanNitomponent$* oscillators in the presence of an
external field. In the largd limit the effective dynamics is described by two-degree-of-freedom classical
Hamiltonian systems. In the classical model we observe chaotic orbits for any value of the external field, while
in the quantum case chaos is strongly suppressed. A simple explanation of this behavior is found in the change
in the structure of the orbits induced by quantum corrections. Consistently with Heisenberg’s principle, quan-
tum fluctuations are forced away from zero, removing in the effective quantum dynamics a hyperbolic fixed
point that is a major source of chaos in the classical mg&4l063-651X98)50302-9

PACS numbgs): 05.45+hb, 03.65.Sq, 11.15.Pg

The study of the quantum mechanics of those systems 1. . 1 Y 1

whose classical counterpart exhibits chaotic dynamics has £= 5 ¢“¢a.+ §M2¢a¢a_ ﬁ(¢“¢a)2+ BN 2 b

attracted a lot of interest in recent years, and is an open and “ 1)

rapidly evolving field[1,2]. Chaos does not exist in the linear

evolution of the quantum state vector, hence different ap\We perform a IN expansion, keeping only the leading order

proaches to identify quantum features that correspond térm in both the classical and quantum case. In the former

classical chaos have been developed, ranging from the appffaS& We start by writing

cation of random matrix theory to the statistical analysis of

energy spectr@3] and to various semiclassical approxima- boa=1IN X ¢p+ b=+ ¢, 2

tions[4]. Dynamical chaos in the actual quantum evolution b

may show up in mean-field approacH&$ or using Bohm's and we approximate the quadratic fluctuations by consider-

formulation of quantum mechanics to define quantum trajecing all of them equivalent in the largd limit,

tories and quantum Lyapunov exponef@i Moreover, at a 2

semiclassical level, the d i f [ 0Pa=¢&" ®
, ynamics of quantum expectation

values can be chaot[@-9. By inserting Eqs(2) and(3) into Eq. (1) it turns out that the

In this Rapid Communication we consider the effectivedynamics of the mean fiel¢ and of its root mean square

dynamics of quantum expectation values as obtained in thems) fluctuation ¢ is governed by the following effective

large N limit. The purpose of the present work is twofold. Hamiltonian:

First, we want to compare the quantum e_ffective dyr_1amics of H=1/2(72+ %) + N8 (92 + gz_v(z))z_ Bo, (4)

a model system with the classical effective dynamics of the

same system at the same level of approximation, in order twhere the two canonically conjugated pairs of variables are

unambiguously detect the effect of the quantum corrections, ™ andé,», andv o= y2?/\ is the minimum of the poten-

on dynamical chaos. This effect turns out to be a strondial energy in Eq(1) for B=0. . .

suppression of chaos with respect to the classical case. Sec- In the guantum case we consider the time evolution of the

ond, we want to show that in our model the suppression ofXPectation valug==,(¢,)/N from a given initial quan-

chaos in the quantum dynamics has a clear physical origin i m state. This initial value quantum problem can be formu-

the fact that quantum fluctuations must be nonvanishing, i.e ated by usmg_the_ “closed.tlme path” functional formalism
in the Heisenberg principle. [10]. The application of this formalism to the present case

As a model system we considemacomponents? field was developed by Coopet al. [11], who showed that the

theory ind+1 space-time dimensions, in the presence of a volution equations in the Iargflalimit are (clgssicaj Hamil-
external fieldB. We shall limit ourselves to the cask=0 on’s equations for the effective Hamiltoniawe keep the
which allows us to offer a simple intuitive explanation of the dependence on the external souBe

effectiveness of quantum corrections in suppressing chaos. A ) 2452

The Lagrangian that we consider is€1,... N) H= E(w2+ %)+ §(¢2+ E£-vg)%+ e Be, (5)

whereo=2n+1, n=(a'a) being the expectation value, in
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TElectronic address: gatto@sc2a.unige.ch [11] it was also shown thak{ in Eq. (5) is just the expecta-
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FIG. 2. Poincareection of the Hamiltonian flow defined by Eq.
(5) with B=0.05. (a) Classical casdp) quantum case; the energy is
§:0-25 in both cases.

FIG. 1. Relative measurg of the chaotic component of phase
space vs energi at different values of the external fieBl Each
point is an average over a sample of 1000 randomly chosen orbit
(@) Classical casefb) quantum case. Symbols in both cases:These limits are: harmonic oscillators Bs-0: and the in-
B=0.01 (circley, B=0.05 (solid circley, B=0.1 (triangles,  tegrable Hamiltonian witBB=0 asE—. In fact, as the
B=0.3 (solid triangles, B=0.5 (squares Error bars are of the perturbation is linear inp, it will become negligible with
same size as the data points. respect to the other terms ik for sufficiently largeE.
Hence, we expect that chaotic orbits may show up in an
intermediate energy range, whose width will dependBon

have studied the dynamics by numerically integrating the
anonical equations of motion derived from the Hamiltonian
(5) using a bilateral symplectic algorithfa2]. The values of
the parameters were fixed by working in natural urits 1
(in the quantum cageand by choosing.=vy=0=1. The
choice =1 corresponds to an initial vacuum state for the
number operatoa’a [11].

We have studied chaos from both a qualitative and a
quantitative point of view, i.e., we have calculated Poincare
sectiong13] in the plane(§,7) and measured the Lyapunov
S(§<ponent[14] of every single orbit. This has allowed us to
also obtain an estimate of the relative measuref the cha-
otic regions in the phase space, defined as the ratio of the
number of trajectories whose Lyapunov exponent is positive
to the total number of trajectories, so that@ <1. For each
value of the energ¥ and of the fieldB we have estimated

| =(@n—&m)2+ (h20%14E%) 2. (6)  ~(E,B) from a sample of 1000 orbits picked up at random in
the allowed region on the section surface. We have consid-

The conservation df in Eq. (6) is due to the fact that the ered the energy rangestE<1, always fixing the zero of
Hamiltonian(5) can be seen as the Hamiltonian, in cylindri- E=0 as the minimum energy allowed in the classiBat 0
cal coordinates, of a particle in three dimensions moving in &ase, and field intensity ranges®=<0.5.
central potentialg being the azimuthal coordinate agdhe In Fig. 1 we plotw(E,B) for the classical and the quan-
radial one. The terni?0?/4¢%¢? is indeed the centrifugal tum case. It is evident that, as soonB& 0, chaotic orbits
barrier term[11], which shows up passing from Cartesian to suddenly appear in the classical case. For small valu&s of
cylindrical variables. From conservation of angular momen-.e., B=0.01, such orbits are present only in a small interval
tum it follows thatl=L?—LZ is conserved. of energies centered arouit=0.1, then the chaotic energy

Switching on the external fieldB# 0), the two systems interval broadens aB grows, and eventually fills the whole
become nonintegrable. They have two integrable limitsexplored energy range & becomes larger than 0.3. In the

We notice that at this order of the expansion the corre
spondence between the classical and the quantum case
very strict, since both are described in terms of correspond;
ing degrees of freedom, the mean fieldnd its rms fluctua-
tions ¢, and the classical effective Hamiltonian is just the
guantum one withh = 0. This shows that the approximation
(3) is equivalent to retaining only the classical contribution
to the fluctuations. The quantum correction to the Hamil-
tonian (5) keeps the fluctuatiog away from zero, consis-
tently with Heisenberg’s uncertainty principle. In the follow-
ing we will always refer to the Hamiltonian(5),
distinguishing between the classical and the quantum ca
according to the value df.

In the case of a vanishing external fiel+€0) the
Hamiltonian (5) is integrable in both the classicaf €0)
and quantum caséeif0). The integrals of motion are the
total energyE and the function
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FIG. 3. The same as in Fig. 2 wi8=0.5 andE=0.6. FIG. 4. Comparison between the values(af(E) in the clas-

sical (open circleg and quantunisolid circleg case a{a) B=0.05
guantum case the situation is completely different: no chaand(b) B=0.5.
otic orbits are detected f@=<0.3, then chaos appears but at
considerably larger values & as compared to the classical dynamics that is observed in the quantum casB,&>0.3
case. To give an example, in Figs. 2 and 3 we show a confloes not correspond to any transition from mainly quantum
parison between Poincasections in the classical and the to mainly classical dynamics.
quantum case at two different values of the external field We now give a simple and intuitive explanation for the
[notice that the external fielB does not affect the shape of suppression of chaos by the quantum correction, in our
the region of the plané, ) accessible to the system, sirse  Model. Let us consider the map of the plaigey) obtained
is coupled top]. by a Poincaresection of the Hamiltonian system defined by

In order to quantify the degree of chaos at a given energfd- (5), such as those reported in Figs. 2 and 3.Bs0

E and external fiel® we have considered also the ensembleboth the classical and the quantum system are integrable.
average (\)(E,B) of the Lyapunov exponent over the Hence the trajectories of the map lie on invariant tori. Nev-
samples of 1000 trajectories used to compu(&,B). A grtheless, the geometry of sgch tori is dramatically d|ff(_arent
comparison between the classical and the quantum case i[sthe two cases: in the classical one s 1/8 a hyperbolic
reported in Fig. 4 for the same values®fas in Figs. 2 and fixed point atX=(0,0) exists, and the trajectory that passes
3. Looking at these figures it is evident that chaos is strongly

suppressed in the quantum case with respect to the classic L I NN B
case. 0.8 - 06 o 4
As E— the quantum and classical models are equiva- L s I ° 1-
lent, hence it is worth considering, in addition to the average - Todr Te %0 o T A
measures of chaog(E,B) and(\)(E,B), also an average - o osh *reeas J-
measure of the relative importance of the quantum part of the 0.6 [~ Sel T YR
Hamiltonian, given by the ensemble avera{®@)(E,B), S I e \‘*e,ﬂw B l
where for each single orb® is defined as | ‘\'\o\‘_.‘ \O\S'e\e\& i
04 X ‘“\**‘-a.iijﬂw i

Q= (Vo)d(Vi. ™ e S S

e LT e ]

Here Vo= (%202)/(8£%) is the quantum correction to the o2

potential, andV is the total potential—suitably normalized
[15] in order that B=Q<1—and(-), stands for a time av- ' E

erage along the orbit. The parame@(E,B) has a smooth FIG. 5. Quantum parametéR) (see text vs the energyE at
dependence on botk and B, at variance with the other itferent values of the fiel@®. Symbols as in Fig. 1. Inse¢Q) vs
parametergFig. 5. The transition from completely ordered, the fieldB for two values ofE, E=0.2 (solid circleg andE=0.8
to mixed (ordered chaotic), to almost completely chaotic (circles.
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throughX is actually a separatrix. Such a hyperbolic point istion of the quantum expectation values is not sensitive to the
due to the presence of a local maximum in the potential. Thénitial conditions[8,9]. Yet it has been argued that “semi-
quantum correction to the Hamiltonian is a “centrifugal quantum chaos” can be a real effect in open quantum sys-
term” that removes the local maximum of the potential andtems since they are driven in a semiclassical regime by the
replaces it with an infinite barrier. Consequently, no hyper-interactions with the environmef,17]. On the other hand,
bolic fixed point in(0,0) exists in the quantum Poincasec-  our results on quantum and classical Lyapunov exponents
tion. As soon as the perturbationBe is turned on, chaos (see, e.g., Fig. Mare in qualitative agreement with those
immediately shows up in the classical case just in the ”eighreported in Ref[6], where a quantum Lyapunov exponent—
borhood of X, because the stable and unstable manifoldsgefined via the Bohm approach to quantum mechanics—was
which constituted the separatrix of the unperturbed map, splfound positive but smaller than the classical one in a model
ano_l have infinite interse_ctiorﬁiG]. In the quantum case th_is of an hydrogen atom in an oscillating electric field. In
major source of chaos is removed because no separatrix e§phm's theory[ 18] particles obey classical equations of mo-
ists in the unperturbed case, and chaos shows up only wheyn with an additional force derived from a “quantum po-
the perturbation has completely distorted the original shapgntial” that is of order’? as the guantum correction to the
of the potential. In physical terms, the quantum suppressiogffective Hamiltoniar(5) is. Bohm'’s equations of motion are
of classical chaos in our model is due to the fact that thesyact, being completely equivalent to the standard quantum
guantum fluctuations are kept away from zero—consstentlyheory' but to write these equations for the syst&nwould
with Heisenberg’s uncertainty principle—by a quantum termyequire the solution of the full time-dependent Sdinger
in the effective Hamiltonian. _ _ equation, thus the analysis of the exact Bohmian dynamics of
To summarize, we have presented an example in whicyr model system is practically unfeasible. Our treatment is
the phenomenon of quantum smoothing of classical chaogpproximate but tractable, and the features it shares with

not only clearly shows up, but also finds a simple explanagghmian mechanics are certainly suggestive.
tion on physical grounds. In order to understand how general

this explanation can be, further work is needed. On one hand, We thank A. Barducci, G. Pettini, and M. Pettini for fruit-
the largeN expansion belongs to semiclassical approximaful discussions and suggestions. L.C. acknowledges useful
tions, the validity of which, as far as chaos is concerned, caniscussions with P. Castiglione and C. Presilla. This work
be questionable. In fact, in some cases it has been explicitlgas been carried out within the EEC program Human Capital
found that the onset of chaos is in correspondence to thend Mobility (Contracts Nos. OFES 950200, UE
breakdown of the approximation, and that the exact evoluERBCHRXCT 94-057%
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