
RAPID COMMUNICATIONS

PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
Chaos in effective classical and quantum dynamics

Lapo Casetti,* Raoul Gatto,† and Michele Modugno‡
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We investigate the dynamics of classical and quantumN-componentf4 oscillators in the presence of an
external field. In the largeN limit the effective dynamics is described by two-degree-of-freedom classical
Hamiltonian systems. In the classical model we observe chaotic orbits for any value of the external field, while
in the quantum case chaos is strongly suppressed. A simple explanation of this behavior is found in the change
in the structure of the orbits induced by quantum corrections. Consistently with Heisenberg’s principle, quan-
tum fluctuations are forced away from zero, removing in the effective quantum dynamics a hyperbolic fixed
point that is a major source of chaos in the classical model.@S1063-651X~98!50302-9#
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The study of the quantum mechanics of those syste
whose classical counterpart exhibits chaotic dynamics
attracted a lot of interest in recent years, and is an open
rapidly evolving field@1,2#. Chaos does not exist in the linea
evolution of the quantum state vector, hence different
proaches to identify quantum features that correspond
classical chaos have been developed, ranging from the a
cation of random matrix theory to the statistical analysis
energy spectra@3# and to various semiclassical approxim
tions @4#. Dynamical chaos in the actual quantum evoluti
may show up in mean-field approaches@5#, or using Bohm’s
formulation of quantum mechanics to define quantum tra
tories and quantum Lyapunov exponents@6#. Moreover, at a
semiclassical level, the dynamics of quantum expecta
values can be chaotic@7–9#.

In this Rapid Communication we consider the effecti
dynamics of quantum expectation values as obtained in
large N limit. The purpose of the present work is twofol
First, we want to compare the quantum effective dynamic
a model system with the classical effective dynamics of
same system at the same level of approximation, in orde
unambiguously detect the effect of the quantum correcti
on dynamical chaos. This effect turns out to be a stro
suppression of chaos with respect to the classical case.
ond, we want to show that in our model the suppression
chaos in the quantum dynamics has a clear physical origi
the fact that quantum fluctuations must be nonvanishing,
in the Heisenberg principle.

As a model system we consider aN-componentf4 field
theory ind11 space-time dimensions, in the presence of
external fieldB. We shall limit ourselves to the cased50,
which allows us to offer a simple intuitive explanation of th
effectiveness of quantum corrections in suppressing ch
The Lagrangian that we consider is (a51, . . . ,N)
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We perform a 1/N expansion, keeping only the leading ord
term in both the classical and quantum case. In the form
case we start by writing

fa51/N (
b

fb1dfa[w1dfa ~2!

and we approximate the quadratic fluctuations by consid
ing all of them equivalent in the largeN limit,

dfa
2.j2. ~3!

By inserting Eqs.~2! and~3! into Eq.~1! it turns out that the
dynamics of the mean fieldw and of its root mean square
~rms! fluctuation j is governed by the following effective
Hamiltonian:

H5 1/2 ~p21h2!1 l/8 ~w21j22v0
2!22Bw, ~4!

where the two canonically conjugated pairs of variables
w,p andj,h, andv0[A2m2/l is the minimum of the poten-
tial energy in Eq.~1! for B50.

In the quantum case we consider the time evolution of
expectation valuef[(a^fa&/N from a given initial quan-
tum state. This initial value quantum problem can be form
lated by using the ‘‘closed time path’’ functional formalism
@10#. The application of this formalism to the present ca
was developed by Cooperet al. @11#, who showed that the
evolution equations in the largeN limit are ~classical! Hamil-
ton’s equations for the effective Hamiltonian~we keep the
dependence on the external sourceB!,

H5
1

2
~p21h2!1

l

8
~w21j22v0

2!21
\2s2

8j2 2Bw, ~5!

wheres[2n11, n5^a†a& being the expectation value, in
the initial state, of the particle number operator for a sing
oscillator, andj the expectation value of the rms fluctuatio
of the fields, in close analogy to the classical case. In R
@11# it was also shown thatH in Eq. ~5! is just the expecta-
tion value of the full quantum Hamiltonian in a gener
mixed ~initial! state characterized by a Gaussian density m
trix.
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We notice that at this order of the expansion the cor
spondence between the classical and the quantum cas
very strict, since both are described in terms of correspo
ing degrees of freedom, the mean fieldw and its rms fluctua-
tions j, and the classical effective Hamiltonian is just t
quantum one with\50. This shows that the approximatio
~3! is equivalent to retaining only the classical contributi
to the fluctuations. The quantum correction to the Ham
tonian ~5! keeps the fluctuationj away from zero, consis
tently with Heisenberg’s uncertainty principle. In the follow
ing we will always refer to the Hamiltonian~5!,
distinguishing between the classical and the quantum c
according to the value of\.

In the case of a vanishing external field (B50) the
Hamiltonian ~5! is integrable in both the classical (\50)
and quantum case (\Þ0). The integrals of motion are th
total energyE and the function

I 5~wh2jp!21 ~\2s2/4j2! w2. ~6!

The conservation ofI in Eq. ~6! is due to the fact that the
Hamiltonian~5! can be seen as the Hamiltonian, in cylind
cal coordinates, of a particle in three dimensions moving
central potential,w being the azimuthal coordinate andj the
radial one. The term\2s2/4j2w2 is indeed the centrifuga
barrier term@11#, which shows up passing from Cartesian
cylindrical variables. From conservation of angular mome
tum it follows thatI[L22Lz

2 is conserved.
Switching on the external field (BÞ0), the two systems

become nonintegrable. They have two integrable lim

FIG. 1. Relative measurem of the chaotic component of phas
space vs energyE at different values of the external fieldB. Each
point is an average over a sample of 1000 randomly chosen or
~a! Classical case;~b! quantum case. Symbols in both case
B50.01 ~circles!, B50.05 ~solid circles!, B50.1 ~triangles!,
B50.3 ~solid triangles!, B50.5 ~squares!. Error bars are of the
same size as the data points.
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These limits are: harmonic oscillators asE→0; and the in-
tegrable Hamiltonian withB50 as E→`. In fact, as the
perturbation is linear inw, it will become negligible with
respect to the other terms inH for sufficiently largeE.
Hence, we expect that chaotic orbits may show up in
intermediate energy range, whose width will depend onB.
We have studied the dynamics by numerically integrating
canonical equations of motion derived from the Hamiltoni
~5! using a bilateral symplectic algorithm@12#. The values of
the parameters were fixed by working in natural units\51
~in the quantum case! and by choosingl5v05s51. The
choices51 corresponds to an initial vacuum state for t
number operatora†a @11#.

We have studied chaos from both a qualitative and
quantitative point of view, i.e., we have calculated Poinc´
sections@13# in the plane~j,h! and measured the Lyapuno
exponent@14# of every single orbit. This has allowed us t
also obtain an estimate of the relative measurem of the cha-
otic regions in the phase space, defined as the ratio of
number of trajectories whose Lyapunov exponent is posi
to the total number of trajectories, so that 0<m<1. For each
value of the energyE and of the fieldB we have estimated
m(E,B) from a sample of 1000 orbits picked up at random
the allowed region on the section surface. We have con
ered the energy range 0<E<1, always fixing the zero of
E50 as the minimum energy allowed in the classicalB50
case, and field intensity range 0<B<0.5.

In Fig. 1 we plotm(E,B) for the classical and the quan
tum case. It is evident that, as soon asBÞ0, chaotic orbits
suddenly appear in the classical case. For small values oB,
i.e., B50.01, such orbits are present only in a small inter
of energies centered aroundE.0.1, then the chaotic energ
interval broadens asB grows, and eventually fills the whole
explored energy range asB becomes larger than 0.3. In th

ts.
:

FIG. 2. Poincare´ section of the Hamiltonian flow defined by Eq
~5! with B50.05. ~a! Classical case,~b! quantum case; the energy
E50.25 in both cases.
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quantum case the situation is completely different: no c
otic orbits are detected forB<0.3, then chaos appears but
considerably larger values ofE as compared to the classic
case. To give an example, in Figs. 2 and 3 we show a c
parison between Poincare´ sections in the classical and th
quantum case at two different values of the external fi
@notice that the external fieldB does not affect the shape o
the region of the plane~j,h! accessible to the system, sinceB
is coupled tow#.

In order to quantify the degree of chaos at a given ene
E and external fieldB we have considered also the ensem
average ^l&(E,B) of the Lyapunov exponent over th
samples of 1000 trajectories used to computem(E,B). A
comparison between the classical and the quantum ca
reported in Fig. 4 for the same values ofB as in Figs. 2 and
3. Looking at these figures it is evident that chaos is stron
suppressed in the quantum case with respect to the clas
case.

As E→` the quantum and classical models are equi
lent, hence it is worth considering, in addition to the avera
measures of chaosm(E,B) and ^l&(E,B), also an average
measure of the relative importance of the quantum part of
Hamiltonian, given by the ensemble average^Q&(E,B),
where for each single orbitQ is defined as

Q5 ^VQ& t/^V& t . ~7!

Here VQ5(\2s2)/(8j2) is the quantum correction to th
potential, andV is the total potential—suitably normalize
@15# in order that 0<Q<1—and^•& t stands for a time av-
erage along the orbit. The parameterQ(E,B) has a smooth
dependence on bothE and B, at variance with the othe
parameters~Fig. 5!. The transition from completely ordered
to mixed (ordered1chaotic), to almost completely chaot

FIG. 3. The same as in Fig. 2 withB50.5 andE50.6.
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dynamics that is observed in the quantum case asB,E.0.3
does not correspond to any transition from mainly quant
to mainly classical dynamics.

We now give a simple and intuitive explanation for th
suppression of chaos by the quantum correction, in
model. Let us consider the map of the plane~j,h! obtained
by a Poincare´ section of the Hamiltonian system defined b
Eq. ~5!, such as those reported in Figs. 2 and 3. AsB50
both the classical and the quantum system are integra
Hence the trajectories of the map lie on invariant tori. Ne
ertheless, the geometry of such tori is dramatically differ
in the two cases: in the classical one, asE.1/8 a hyperbolic
fixed point atX5(0,0) exists, and the trajectory that pass

FIG. 4. Comparison between the values of^l&(E) in the clas-
sical ~open circles! and quantum~solid circles! case at~a! B50.05
and ~b! B50.5.

FIG. 5. Quantum parameter^Q& ~see text! vs the energyE at
different values of the fieldB. Symbols as in Fig. 1. Inset:^Q& vs
the fieldB for two values ofE, E50.2 ~solid circles! andE50.8
~circles!.
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throughX is actually a separatrix. Such a hyperbolic point
due to the presence of a local maximum in the potential. T
quantum correction to the Hamiltonian is a ‘‘centrifug
term’’ that removes the local maximum of the potential a
replaces it with an infinite barrier. Consequently, no hyp
bolic fixed point in~0,0! exists in the quantum Poincare´ sec-
tion. As soon as the perturbation2Bw is turned on, chaos
immediately shows up in the classical case just in the ne
borhood ofX, because the stable and unstable manifo
which constituted the separatrix of the unperturbed map, s
and have infinite intersections@16#. In the quantum case thi
major source of chaos is removed because no separatrix
ists in the unperturbed case, and chaos shows up only w
the perturbation has completely distorted the original sh
of the potential. In physical terms, the quantum suppress
of classical chaos in our model is due to the fact that
quantum fluctuations are kept away from zero—consiste
with Heisenberg’s uncertainty principle—by a quantum te
in the effective Hamiltonian.

To summarize, we have presented an example in wh
the phenomenon of quantum smoothing of classical ch
not only clearly shows up, but also finds a simple expla
tion on physical grounds. In order to understand how gen
this explanation can be, further work is needed. On one ha
the largeN expansion belongs to semiclassical approxim
tions, the validity of which, as far as chaos is concerned,
be questionable. In fact, in some cases it has been expli
found that the onset of chaos is in correspondence to
breakdown of the approximation, and that the exact evo
o
ic
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tion of the quantum expectation values is not sensitive to
initial conditions @8,9#. Yet it has been argued that ‘‘sem
quantum chaos’’ can be a real effect in open quantum s
tems since they are driven in a semiclassical regime by
interactions with the environment@8,17#. On the other hand
our results on quantum and classical Lyapunov expone
~see, e.g., Fig. 4! are in qualitative agreement with thos
reported in Ref.@6#, where a quantum Lyapunov exponent—
defined via the Bohm approach to quantum mechanics—
found positive but smaller than the classical one in a mo
of an hydrogen atom in an oscillating electric field.
Bohm’s theory@18# particles obey classical equations of m
tion with an additional force derived from a ‘‘quantum po
tential’’ that is of order\2 as the quantum correction to th
effective Hamiltonian~5! is. Bohm’s equations of motion ar
exact, being completely equivalent to the standard quan
theory, but to write these equations for the system~1! would
require the solution of the full time-dependent Schro¨dinger
equation, thus the analysis of the exact Bohmian dynamic
our model system is practically unfeasible. Our treatmen
approximate but tractable, and the features it shares w
Bohmian mechanics are certainly suggestive.
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